"Mechanical circulatory support in cardiogenic shock" The Cardiologist's view

ACCA Masterclass 2017

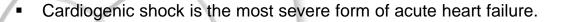
Pascal Vranckx MD, PhD. Medical director Cardiac Critical Care Services Hartcentrum Hasselt Belgium

Disclosure of Interest

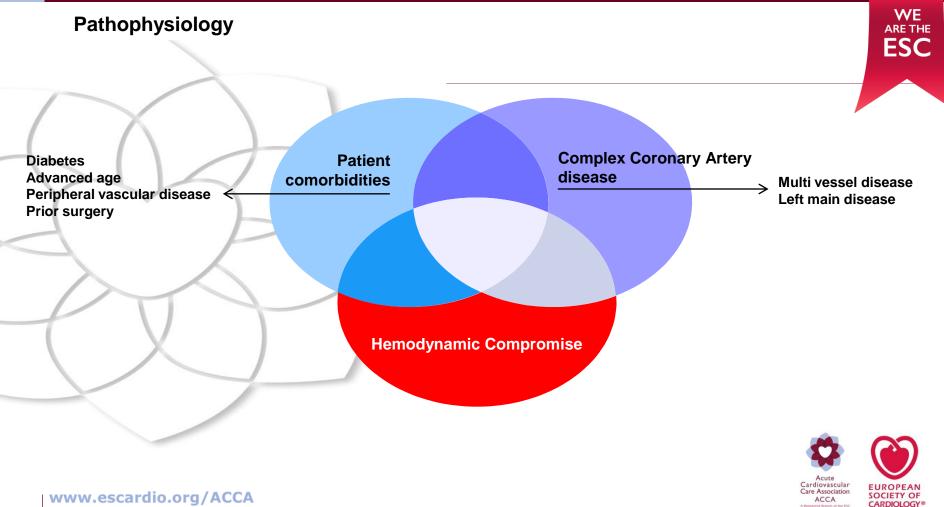
Pascal Vranckx has the following potential conflicts of interest to report:

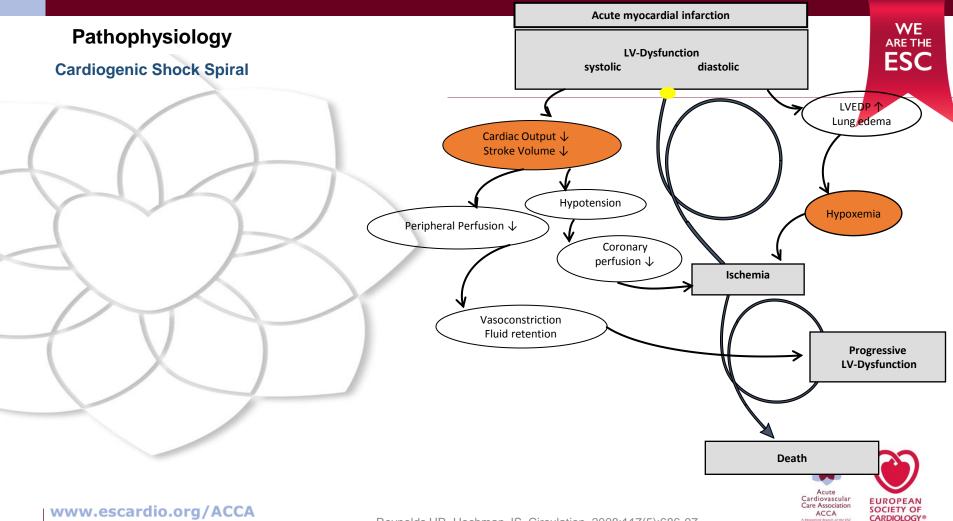
Speaking or consulting fees from: AstraZeneca, Bayer Health Care and Daiichi-Sankyo. outside this presentation.

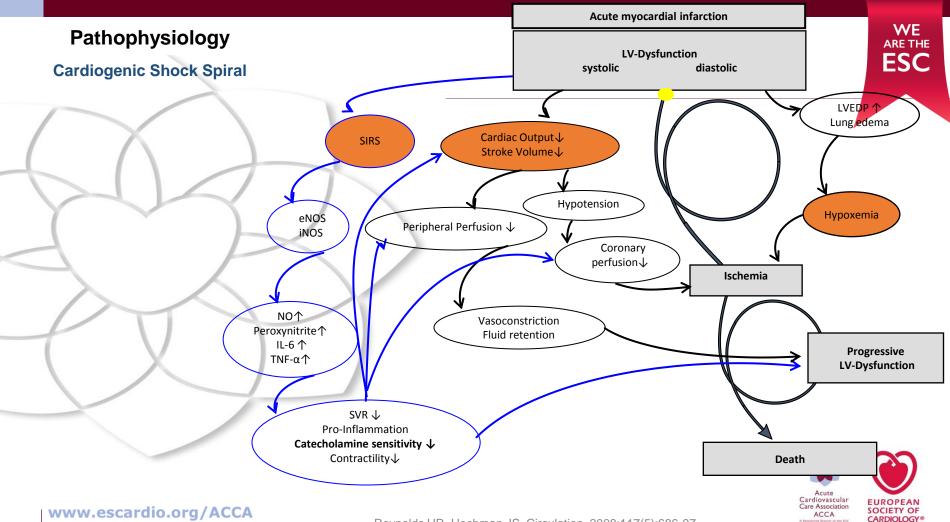
WE

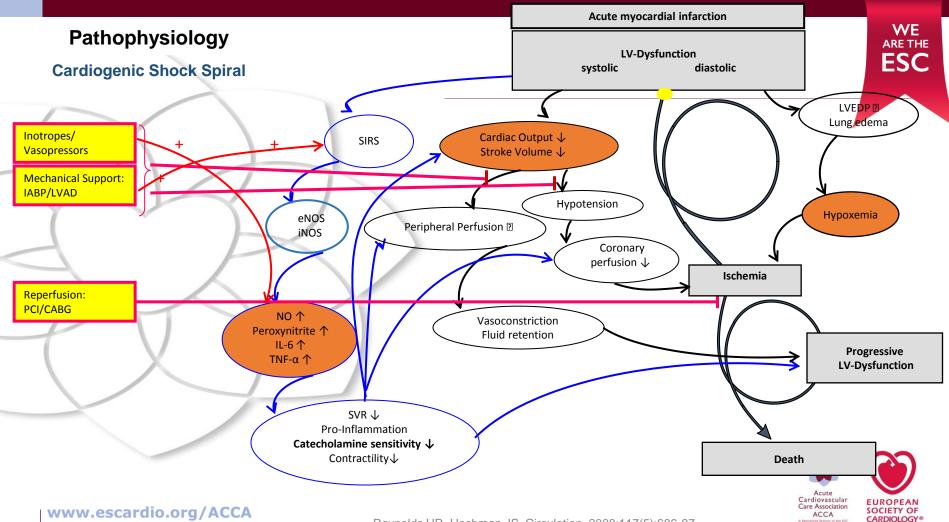

ARE THE **ESC**

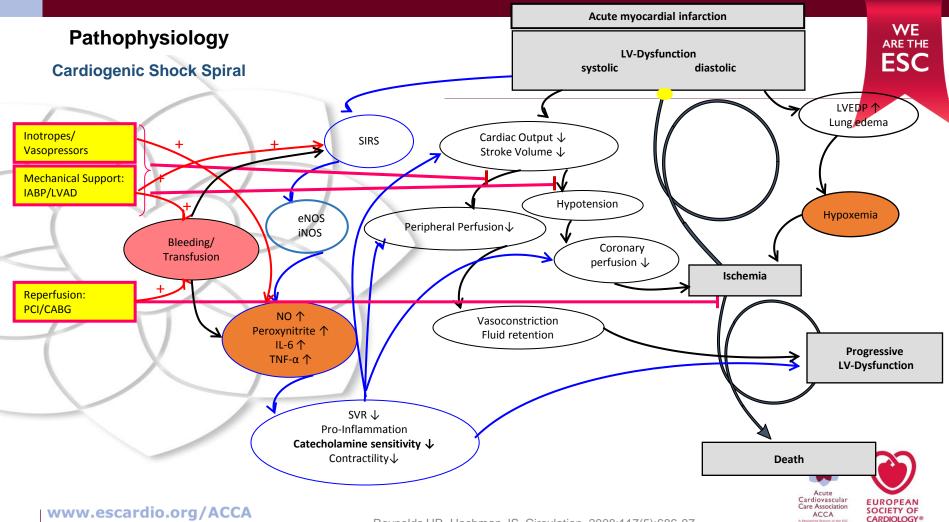
background

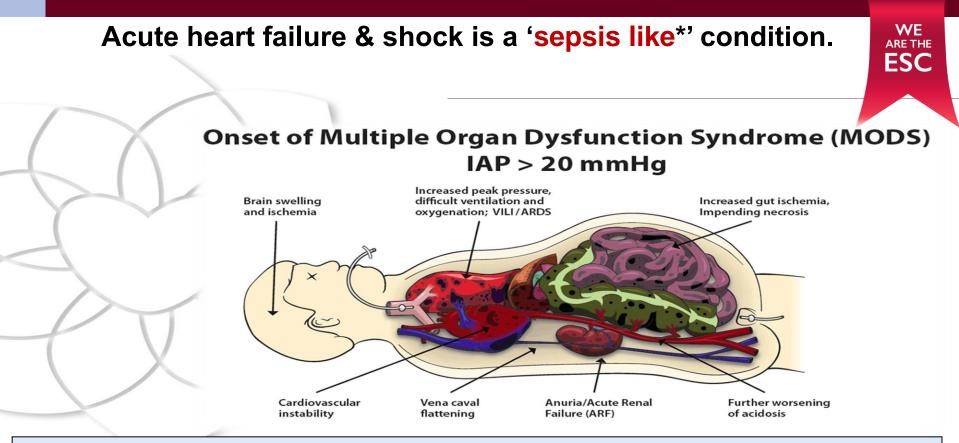

- It is defined as pump failure despite adequate preload, leading to tissue hypoxia and organ dysfunction.
- Low mixed venous oxygen saturations and elevated lactate levels are surrogates for tissue hypoxia, while encephalopathy and low urine output indicate organ dysfunction.
- Patients with acute myocardial infarction complicated by acute heart failure or cardiogenic shock have high


mortality with conventional therapy (7-10% /50%).



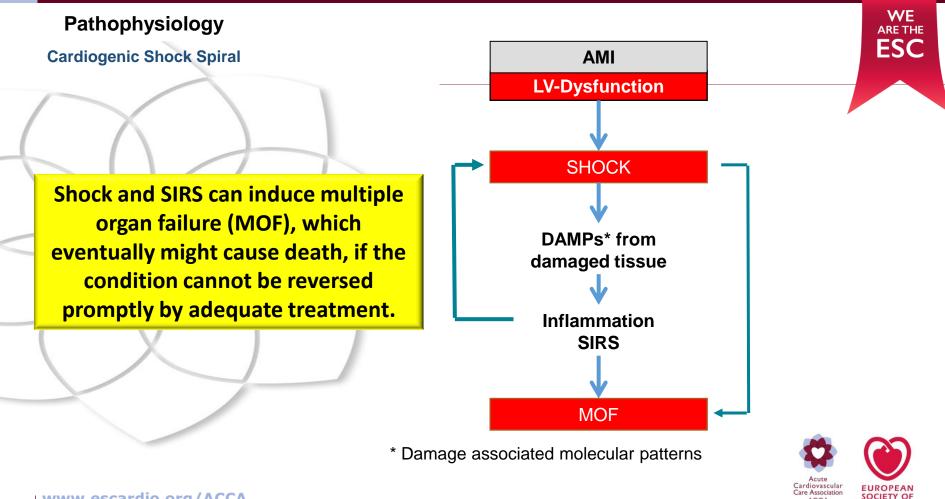

WE ARE THE


ESC



Underperfusion of the intestine and the hematogenous release of endotoxin in patients with HF has been proposed as a mechanism for progression of HF and CRS type 1

Acute Cardiovascular


Care Association

ACCA

EUROPEAN

SOCIETY OF

CARDIOLOGY

www.escardio.org/ACCA

Rudiger A. Understanding cardiogenic shock. Eur J Heart Failure. 2015;17(5):466-7.

ACCA A Registered Branch of the ESC

			OCK: Initial triage and management iogenic shock/end organ hypoperfusion is recognised admission.				
EMERGENCY DEPARTMENT	0 min 5 min	EARLY TRIAGE & MONITORING Start high flow O ₂ Establish i.v. access	 Age: 65-74, ≥75 Heart rate >100 beats per minute Systolic blood pressure <100 mmHg Proportional pulse pressure ≤25 mmhg (CI <2.2l/min/m²) Orthopnea (PCWP >22 mmHg) Tachypnea (>20/min), >30/min (!) Killip class II-IV Clinical symptoms of tissue hypoperfusion/hypoxia: cool extremities, decreased urine output (urine output <40 ml/min) 				
EMERG	15 min	 INITIAL RESUSCITATION Arterial and a central venous catheterization with a catheter capable of measuring central venous oxygen saturation Standard transthoracic echocardiogram to assess left (and right) ventricular 	 CORRECT: hypoglycemia & hypocalcemia, TREAT: sustaned arrhythmias: brady- or tachy- Isotonic saline-fluid challenge of 20 to 30 ml per kilogram of body weight over a 30-minute period to achieve a central venous pressure of 8 to 12 mmHg or until perfusion improves (with a maximum of 500 ml) CONSIDER NIVmechanical ventilation for comfort (fatigue, distress) or as needed: To correct acidosis To correct hypoxemia INOTROPIC SUPPORT (dobutamine and/or vasopressor support) 				
	60 min	 function and for the detection of potential mechanical complications following MI Early coronary angiography in specialized myocardial intervention center when signs and/or symptoms of ongoing myocardial ischemia (e.g. ST segment elevation myocardial infarction). 	TREATMENT GOALS • a mean arterial pressure of 60 mmHg or above, • a mean pulmonary artery wedge pressure of 18 mmHg or below, • a central venous pressure of 8 to 12 mmHg				
		CA	In persistent drug-resistant cardiogenic shock, consider mechanical circulatory support				

<

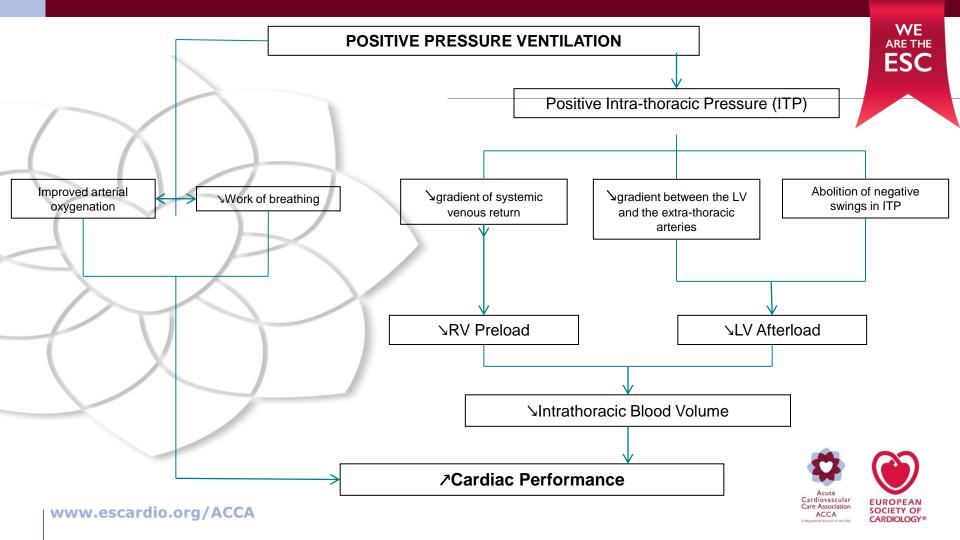
Pre-warned is Pre-armed Risk Assessment

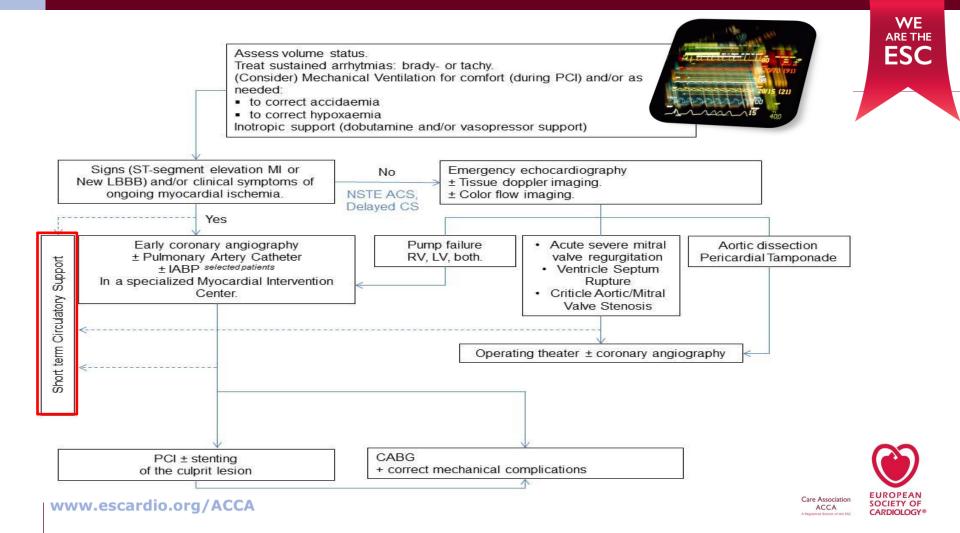
□ Age

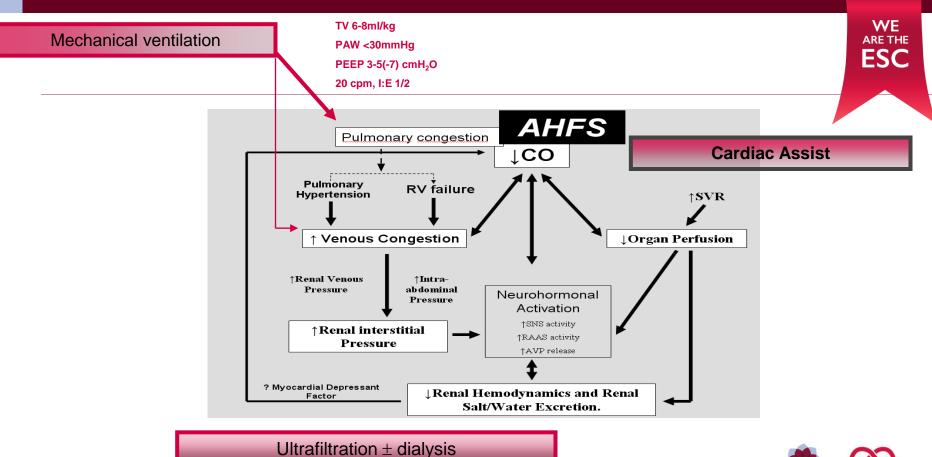
- □ Heart Rate > 100bpm
- Systolic Blood Pressure < 100mmHg
- □ Proportional Pulse Pressure ≤25 (Cl < 2.2)*
- □ (if) Orthopnoe (PCWP > 22)
- KILLIP Class II-IV

www.escardio.org/ACCA

* Stevenson LW et al. JAMA 1989; 261: 884-8

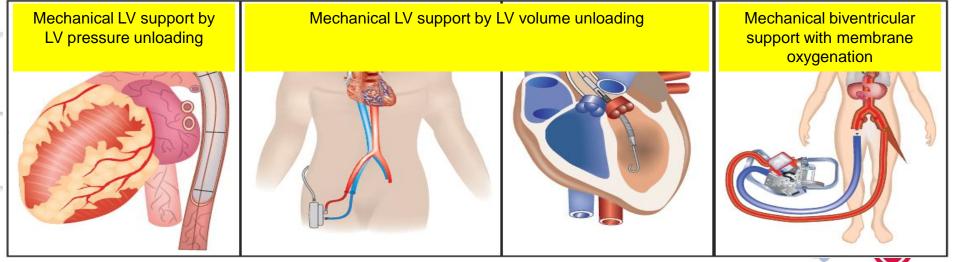

CARDIOGENIC SHOCK: Initial triage and management


This protocol should be initiated as soon as cardiogenic shock/end organ hypoperfusion is recognised and should not be delayed pending intensive care admission.


	EMERGENCY DEPARTMENT	0 min 5 min 15 min	ARDIAC INTENSIVE CARE UNIT	EARLY TRIAGE & MONITORING Start high flow O2 Establish i.v. access	 Age: 65-74, ≥75 Heart rate >100 beats per minute Systolic blood pressure <100 mmHg Proportional pulse pressure ≤25 mmhg (Cl <2.2l/min/m²) Orthopnea (PCWP >22 mmHg) Tachypnea (>20/min), >30/min (!) Killip class II-IV Clinical symptoms of tissue hypoperfusion/hypoxia: cool extremities, decreased urine output (urine output <40 ml/h) decreased capillary refill or mottling alteration in mental status 					
	EMER			 INITIAL RESUSCITATION Arterial and a central venous catheterization with a catheter capable of measuring central venous oxygen saturation Standard transthoracic echocardiogram to assess left (and right) ventricular function and for the detection of potential mechanical complications following MI Early coronary angiography in specialized myocardial intervention center when signs and/or symptoms of ongoing myocardial ischemia (e.g. ST segment elevation myocardial infarction). 	 CORRECT: hypoglycemia & hypocalcemia, TREAT: sustaned arrhythmias: brady- or tachy- Isotonic saline-fluid challenge of 20 to 30 ml per kilogram of body weight over a 30-minute period to achieve a central venous pressure of 8 to 12 mmHg or until perfusion improves (with a maximum of 500 ml) CONSIDER NIVmechanical ventilation for comfort (fatigue, distress) or as needed: To correct acidosis To correct hypoxemia INOTROPIC SUPPORT (dobutamine and/or vasopressor support) 					
					 TREATMENT GOALS a mean arterial pressure of 60 mmHg or above, a mean pulmonary artery wedge pressure of 18 mmHg or below, a central venous pressure of 8 to 12 mmHg, a urinary ouput of 0,5 ml or more per hour per kilogram of body weight an arterial pH of 7.3 to 7.5 a central venous saturation (ScvO₂) ≥70% (provided SpO₂ ≥93% and Hb level ≥9 g/dl) 					
			CAI		In persistent drug-resistant cardiogenic shock, consider mechanical circulatory support					

ACCA

INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) stages for classifying patients with advanced heart failure WE


ARE THE **ESC**

INTERMACS level	NYHA Class	Description	Device	1y survival with LVAD therapy
1. Cardiogenic shock "Crash and burn"	IV	Haemodynamic instability in spite of increasing doses of catecholamines and/or mechanical circulatory support with critical hypoperfusion of target organs (severe cardiogenic shock).	ECLS, ECMO, percutaneous support devices	52.6±5.6%
2. Progressive decline despite inotropic support "Sliding on inotropes"	IV	Intravenous inotropic support with acceptable blood pressure but rapid deterioration of renal function, nutritional state, or signs of congestion.	ECLS, ECMO, LVAD	63.1±3.1%

Circulatory support systems for cardiogenic shock after ACS can be distinguished by:

- the method of placement (i.e. percutaneous vs. surgical),
- the type of circulatory support (i.e. left ventricular, right ventricular, or biventricular pressure and/or volume unloading), whether they are combined with gas exchange.

WE ARE THE ESC

Circulatory support systems for cardiogenic shock after ACS can be distinguished by:

- the method of placement (i.e. percutaneous vs. surgical),
- the type of circulatory support (i.e. left ventricular, right ventricular, or biventricular pressure and/or volume unloading), whether they are combined with gas exchange.

WE ARE THE ESC

ACCA

CARDIOLOGY

	TandemHeart [™]	Impella Recover [®] LP 5.0	Impella Recover [®] LP 2.5	Impella CP [®]	HeartMate PHP	ЕСМО	
Catheter size (French)	-	9	9	9	-	-	
Cannula size (French)	21 venous 12–19 arterial	21	12	14	14	17–21 venous 16–18 arterial	
Flow (L/min)	Max 4.0	Max 5.0	Max 2.5	3.7–4.0	\approx 4,0	Max 7.0	
Pump speed (rpm)	Max 7500	Max 33 000	Max 51 000	Max 51 000		Max 5000	
Insertion/placement	Percutaneous (femoral artery plus LA after trans- septal puncture)	Peripheral surgical cut-down (femoral artery)	Percutaneous (femoral artery)	Percutaneous (femoral artery)	Percutaneous (femoral artery)	Percutaneous (femoral artery plus vein)	
Recommended duration of use	-14 days	10 days	10 days	10 days		-7 days	
Care Association Care Association ACCA							

WE ARE THE Fundamentals of Left Ventricular Mechanics ESC 150 150 150 ESPVR ESPVR LV Pressure (mm Hg) LV Pressure (mm Hg) Ea -V₁₂₀ Ea Baseline TPR OF HR eserilia estimation of the second sec 00 100 100 Ees Fes TPR OF HIR 50 50 Preload 50 EDPVR Ees

100

LV Volume (ml)

150

EDV

0

0

50

100

LV Volume (ml)

Normal pressure–volume loop (PVL), is bounded by the end-systolic pressure– volume relationship (ESPVR) and end-diastolic pressure–volume relationship (EDPVR).

50

0

0

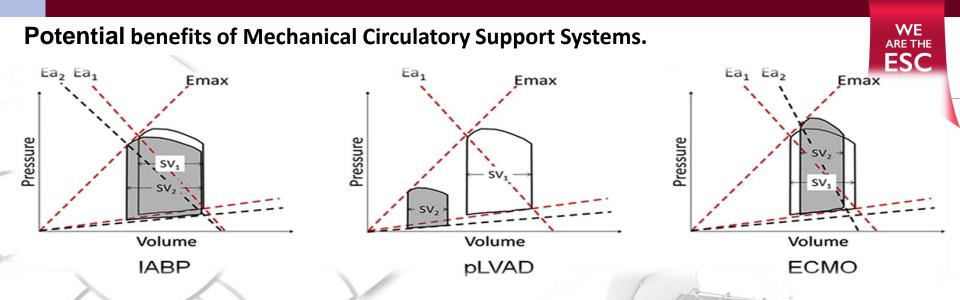
Ŷο

150 EDV

150

50 ESV

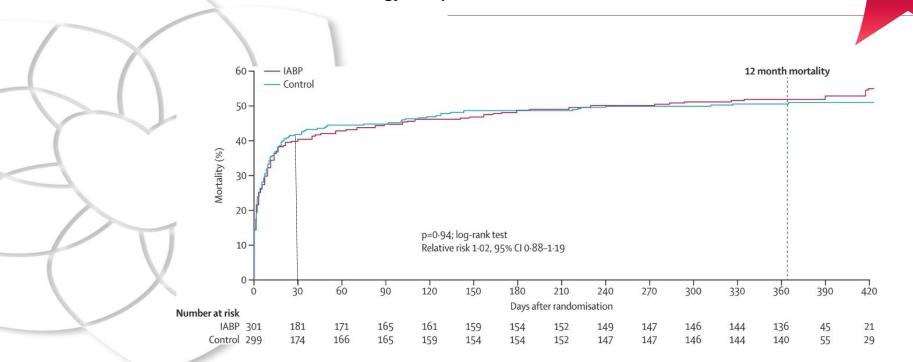
100


LV Volume (ml)

LV Pressure (mm Hg)

0

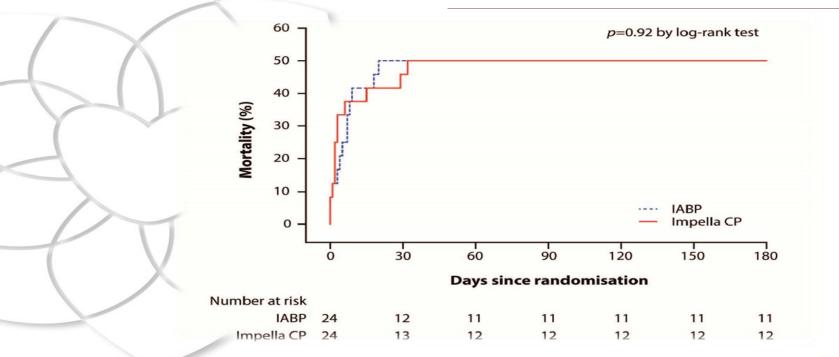
0


Vo

- maintain vital organ perfusion, thereby preventing systemic shock syndrome,
- reduce intra-cardiac filling pressures, thereby reducing congestion and/or pulmonary edema,
- reduce left ventricular volumes, wall stress, and myocardial oxygen consumption.

The use of intra-aortic balloon counterpulsation did not significantly reduce 30-day or 1 year mortality in patients with cardiogenic shock complicating acute myocardial infarction for whom an early revascularization strategy was planned.

Thiele H. et al. N Engl J Med 2012; 367:1287-1296 / Lancet 2013 382, 1638-1645

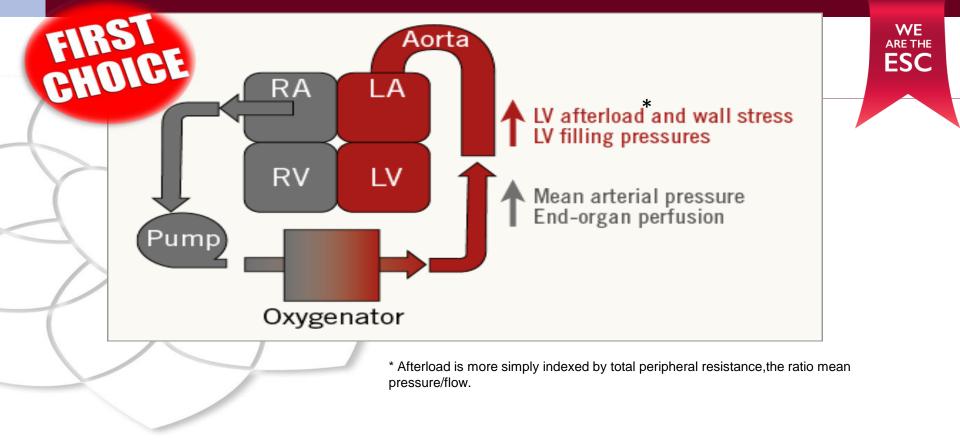


WE

ARE THE

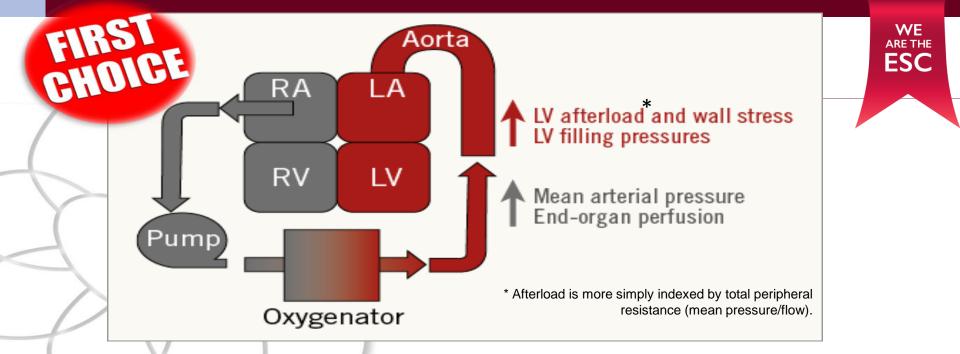
ESC

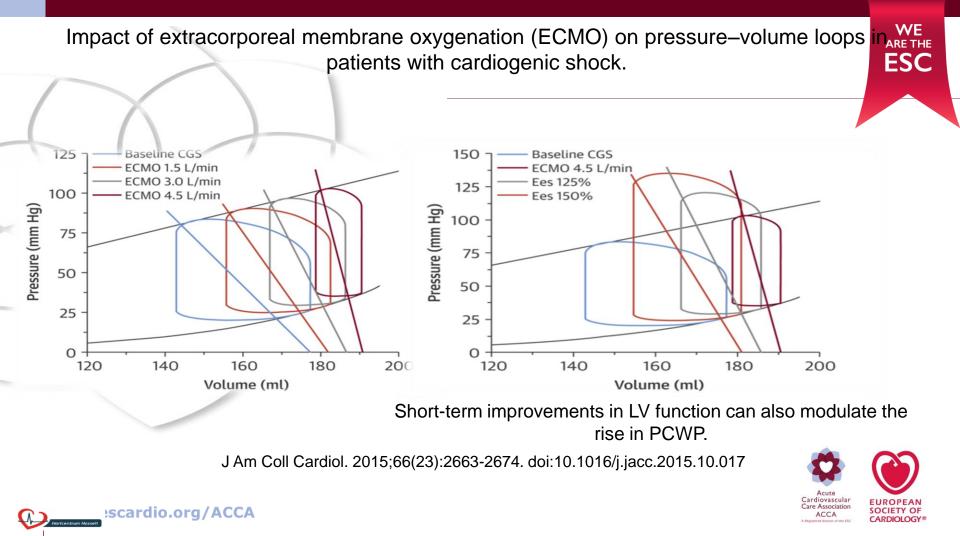
In the IMPRESS-trial, a small (n=48) explorative randomized controlled involving mechanically ventilated cardiogenic shock patients after acute myocardial infarction, routine treatment with Impella CP was not associated with reduced 30-day mortality compared with IABP.

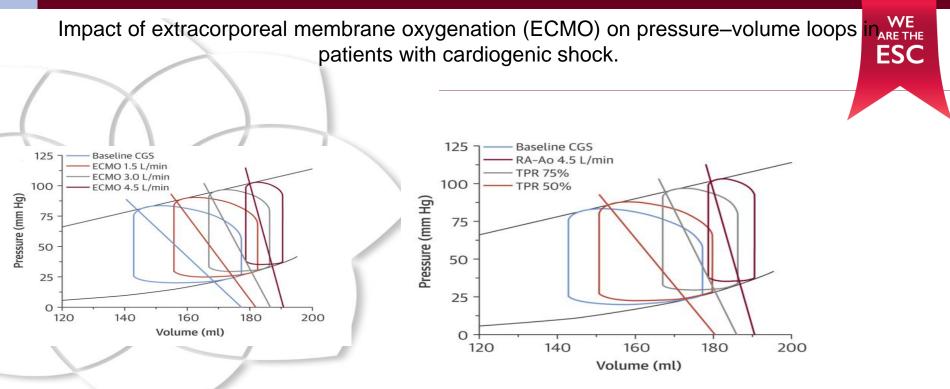


WE ARE THE

ESC


J Am Coll Cardiol. 2016;():. doi:10.1016/j.jacc.2016.10.022



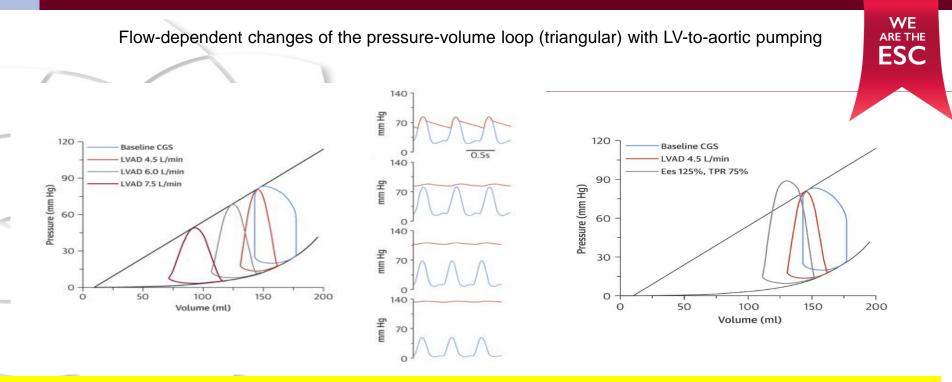

ACCA Masterclass 2017

However, strictly on a hemodynamic basis, the use of this circuit configuration can cause **significant increases in LV pre-load** and, in some cases, pulmonary edema.

TPR can be reduced naturally by the baroreceptors, pharmacologically (e.g., nitroprusside), or mechanically (e.g., by IABP).

Acute Cardiovascular Cardasociation AcCA Hugureze back

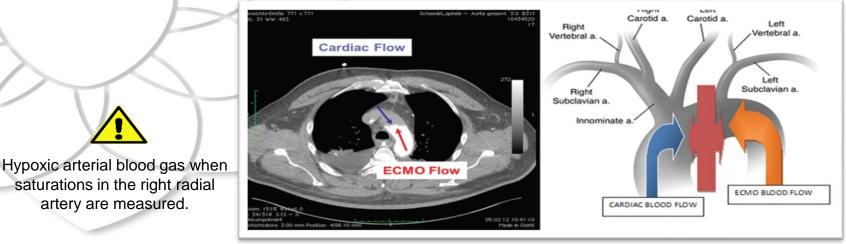
J Am Coll Cardiol. 2015;66(23):2663-2674. doi:10.1016/j.jacc.2015.10.017


Impact of extracorporeal membrane oxygenation (ECMO) on pressure–volume loops in WE patients with cardiogenic shock.

When secondary factors are insufficient to self-mitigate a rise in LV EDP, other strategies may be utilized to reduce possible increases in afterload pressure and allow for LV decompression. These include:

- •atrial septostomy (to allow left-to-right shunting),
- a surgically placed LV vent,

 an intra-aortic balloon pump, or use of a percutaneous LV-to-aorta ventricularassist device (i.e. axial flow device)


With increased flow, there are greater degrees of LV unloading and uncoupling between aortic and peak LV pressure generation

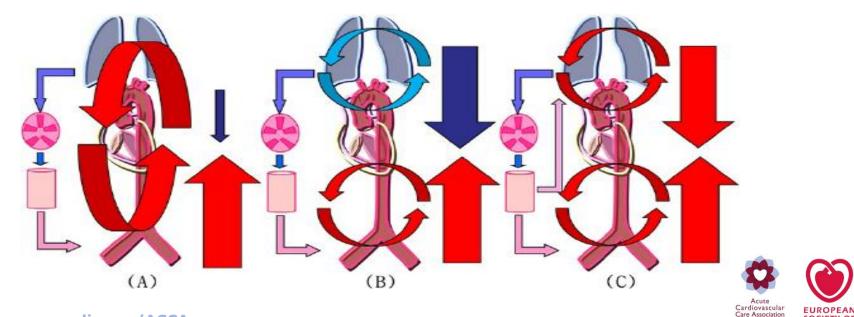
J Am Coll Cardiol. 2015;66(23):2663-2674. doi:10.1016/j.jacc.2015.10.017

The Harlequin (north-south) syndrome.

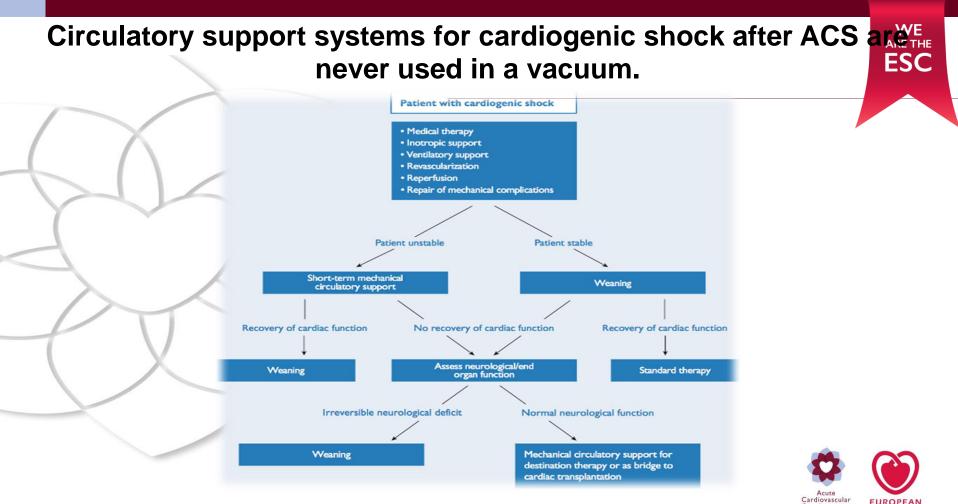
Femoral veno-arterial extracorporeal membrane oxygenation may cause differential hypoxia (lower P_aO₂ in the upper body than in the lower body, i.e., two-circulation syndrome) because of normal cardiac output with severe impairment of pulmonary function

WE ARE THE ESC

artery are measured.

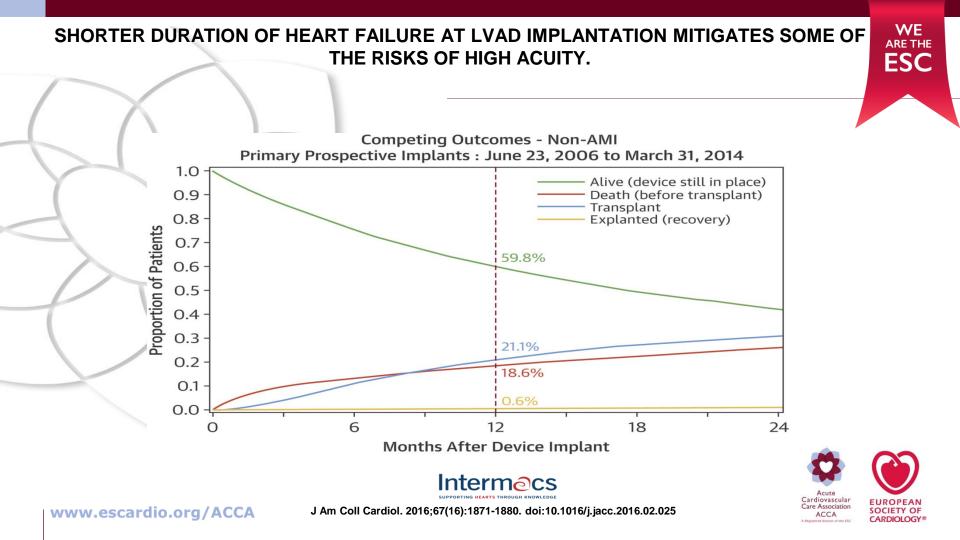

The Harlequin (north-south) syndrome.

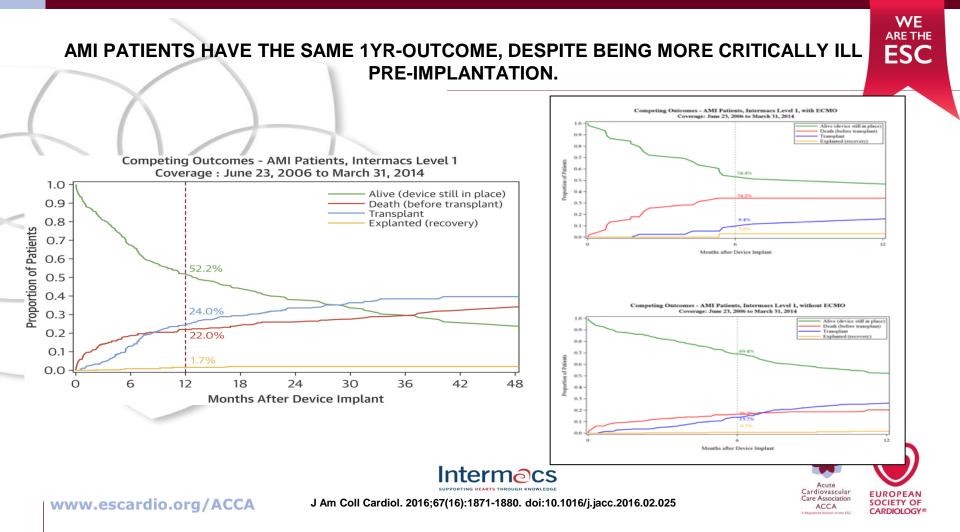
ARE THE ESC


SOCIETY OF

ACCA

Femoral veno-arterial extracorporeal membrane oxygenation may cause differential hypoxia (lower P_aO_2 in the upper body than in the lower body, i.e., two-circulation syndrome) because of **normal cardiac output** with **severe impairment of pulmonary function**




www.escardio.org/ACCA

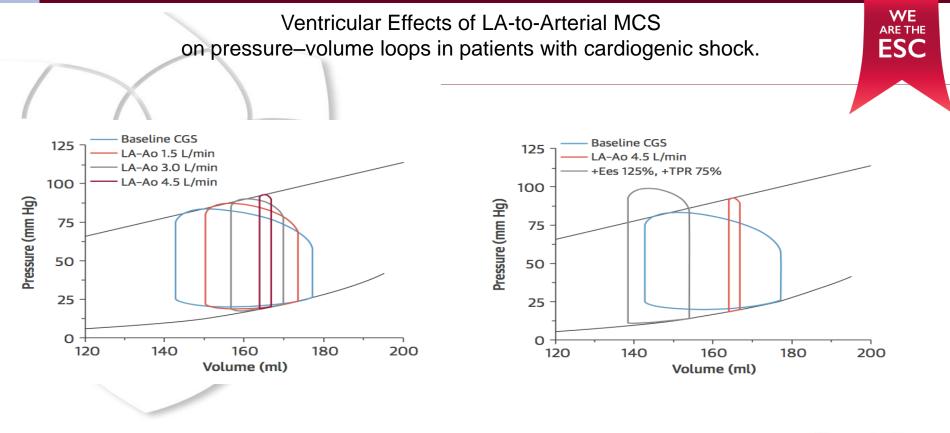
Care Association ACCA

SOCIETY OF

CARDIOLOGY

ADVERSE EVENTS

	Early Period				Late Period			
	AMI Rate (n = 502) (Per 100 Patient-Months)	Non-AMI Rate (n = 9,727) (Per 100 Patient-Months)	Rate Ratio	p Value	AMI Rate (n = 502) (Per 100 Patient-Months)	Non-AMI Rate (n = 9,727) (Per 100 Patient-Months)	Rate Ratio	p Value
Bleeding	930.30	19.46	1.6	<0.01	3.02	3.43	0.9	0.10
Cardiac arrhythmia	16.20	10.96	1.5	<0.01	0.47	1.09	0.4	<0.01
Hemolysis	3.47	2.12	1.6	<0.01	0.92	0.69	1.3	0.04
Infection	24.12	16.50	1.5	<0.01	4.84	5.10	0.9	0.39
Myocardial infarction	0.38	0.12	3.2	0.01	0.09	0.03	3.0	0.02
Neurological dysfunction	6.48	4.05	1.6	<0.01	1.49	1.24	1.2	0.09
Other SAE	20.27	12.95	1.6	<0.01	1.94	1.95	1.0	0.99
Rehospitalization	16.88	20.46	0.8	<0.01	14.18	16.28	0.9	<0.01
Renal dysfunction	5.58	4.02	1.4	0.01	0.35	0.51	0.7	0.09
Respiratory failure	12.81	7.44	1.7	<0.01	0.42	0.52	0.8	0.3
Right heart failure	5.50	6.27	0.9	0.275	0.21	0.53	0.4	<0.01
Venous thromboembolism	3.32	1.75	1.9	<0.01	0.05	0.08	0.7	0.48


WE ARE THE

ESC

www.escardio.org/ACCA

J Am Coll Cardiol. 2016;67(16):1871-1880. doi:10.1016/j.jacc.2016.02.025

J Am Coll Cardiol. 2015;66(23):2663-2674. doi:10.1016/j.jacc.2015.10.017

www.escardio.org/ACCA

ACCA Masterclass 2017

When you don't have full access to these tools...?

ESC

Hartcentrum Hasselt

- The number of patients with advanced heart failure that has become unresponsive to
 - conventional medical therapy is increasing rapidly.
 - No other field in cardiology is experiencing such explosive growth as mechanical circulatory support for advanced heart failure (HF).
- To date, there are no guidelines for appropriate selection for use of these devices that are approved by national societies in the field.

WE ARE THE

ESC

- Treatment options for mechanical circulatory support must be tailored to each patient in order to maximize the potential benefits and minimize the risk of detrimental effects.
 - Flow rates and circuit configurations both have a major impact on their overall cardiac and systemic effects.

WE ARE THE ESC

- Other factors also affect the response to MCS, include:
 - 1) the cardiovascular substrate;
 - 2) the degree of acute LV recovery following initiation of MCS (;
 - 3) right-sided factors, such as RV systolic and diastolic function and pulmonary vascular resistance;
 - 4) the degree to which baroreflexes are intact and can modulate vascular and ventricular properties;
 - 5) concomitant medications;
 - 6) metabolic factors, such as pH and pO_2 , which, if corrected, could result in improved ventricular and vascular function.

WE ARE THE

ESC

Discever.

The ESC Textbook of **Intensive and Acute Cardiovascular** Care

SECOND EDITION

ARCO TUBATO ASCAL VEANCER CHRISTIAAN VI

OXPORD

OXFORD MEDICINE

ONLINE

WE ARE THE ESC